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In describing the behavior of a continuous medium one uses invariant tensors, character- 
izing the state of the medium [1-4]. The ideas forming the basis of determining the relation 
between the invariants in the mechanics of a solid deformed body [2, 4] can also be used in 
fluid mechanics. 

Invariants of the Reynolds Stress Tensor. The Reynolds stress tensor R can be written 
down in componentless (coordinateless) form [i] 

R =--pv'  | v'. 

Here v '  denotes the fluctuating velocity vector, O is the fluid density, | is the symbol of 
tensor multiplication, and the bar is Reynolds averaging. This tensor, as any other second- 
rank tensor, can be represented in an arbitrary basis ei as R = RiJe~ | el. Its physical com- 
ponents Rij form a matrix, whose elements are well described by measurements in the flow by 
means of a thermoanemometer. In the basis (el, ez,%) with corresponding components (u, v, w) 
of the velocity vector v this matrix is 

Bal Ra2 R~a \-:- pu'w' ; -- pv'w'; pw '~ / 

( t h e  p r i m e s  r e f e r  t o  t h e  f l u c t u a t i n g  q u a n t i t i e s ) .  The e x p e r i m e n t a l  d a t a  show t h a t  t h e  sym- 
m e t r i c  t e n s o r  R h a s  a l a r g e  s p h e r i c a l  p a r t  and a r e l a t i v e l y  s m a l l  v a r i a n c e  p o r t i o n .  

Fo r  any  s e c o n d  r a n k  t e n s o r ,  i n c l u d i n g  R, one can  w r i t e  a c h a r a c t e r i s t i c  e q u a t i o n  

o 3 - - I ~ + I I ~ - - I I I  = 0 ,  (2) 

where  o a r e  t h e  p r i n c i p a l  ( e i g e n )  v a l u e s  o f  t h e  t e n s o r ,  and I ,  I I ,  I I I  a r e  i t s  i n v a r i a n t s ,  
d e t e r m i n e d  by t h e  e q u a t i o n s  

I = t r R ,  I I = + ( ( t r R )  2 - t r R 2 ) ,  I I I = d e t R  (3 )  

( t r  and d e t  a r e  t h e  t r a c e  and d e t e r m i n a n t ,  r e s p e c t i v e l y ) .  Knowing t h e  m a t r i x  ( 1 ) ,  f rom Eqs .  
(3 )  one  can  c a l c u l a t e  t h e  i n v a r i a n t s  I ,  I I ,  I I I .  I n  p a r t i c u l a r ,  f o r  t h e  f i r s t  i n v a r i a n t  

I = tr R = - -p(u '2 + v '2 + w ----'2) = - -pk  (4 )  

(k is twice the kinetic energy of fluctuations). It is hence seen that the first invariant, 
characterizing the mean normal stress at the point under consideration, is proportional to 
the kinetic energy of turbulent fluctuations. Similarly, one can determine from Eqs. (3) 
the invariants II and III. 

The reality of roots of the cubic equation (2) imposes certain restrictions on the rela- 
tions between its coefficients. Using this fact, based on the presently available vast ex- 
perimental material, one can attempt to find empirically the relation between the invariants 
of the Reynolds stress tensor. Figure i shows the results of processing a large number of 
various experimental data [5-12]. Here i are the experimental points corresponding to a 
planar channel [5], 2 is a circular tube [6], 3 is a boundary layer on a plate [7], 4 is 
planar Couette flow [8], 5 is pressurized Couette flow (experiment 3 [8]), 6 is pressurized 
Couette flow <experiment 13 [8]), 7 is a planar jet [9], 8 is a circular jet [i0], 9 is a 
rotating cone [ii], and I0 is a rotating plane [12]. It is seen that among the invariants 
II and I, III and I there exists a relation, expressed as a dependence of the second and 
third invariants on the first, proportional to the fluctuation kinetic energy. However, 
despite the small interval of invariants 0.22 ~ 11/13 ~ 0.33; 0.010 ~ III/I 3 ~ 0.025, the 
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stress tensor and the corresponding stress state at the flow point under consideration vary 
strongly with variations in these quantities. This is explained by the fact that on the back- 
ground of the predominant spherical portion of the tensor R the available characteristics of 
the stress state, determined by the second and third invariants, become poorly distinguished. 
Therefore, along with invariants !I and III one must relate the second and third invariants: 
of the variance of the tensor R--(I/3)(tr R)G. In the studies of Lumley, Mathieu, and 
Ghandel [13] is analyzed the effect of these invariants on the characteristics of turbulent 
flows. However, if one constructs the dependences of the variance invariants onthe first 
invariant, it can be verified that they have the nature of a "starry sky," as a result of 
which is imposed an impression of the impossibility of searching any relations between the 
invariants. To clarify the problem of relation between the invariants it is convenient to 
select the second and third invariants of the variance part in the form suggested in [2, 4]. 
These invariants are related to the coefficients of the cubic equation correspondong to (2). 

The cubic equation (2), having three real roots a I, c 2, o a, can be represented as fol- 

lows: 

(a/I)  s - -  (a/I)  ~ -5 (II /I~)(~/I)  - -  I I I / I  s = O. 

Substituting (o/I) = z - 1/3, it is reduced to incomplete form 

z 8 + pz + q = 0, p = I I / I  ~ - -  i13,: q ---- - -2 /27  + (l /3)ZI/I  ~ - -  I I I / I  3. ( 5 )  

S i n c e  t h e  r o o t s  o f  t h e  c u b i c  e q u a t i o n  f o r  R a r e  r e a l  ( t h e r e  c a n  be  no i m a g i n a r y  f l u c t u a t i o n s ) ,  
then p ~ < 0 ,  Q<~0 [14], where 

Q = (p/3) s q- (q/2) 2. ( 6 )  

The second and third invariants of the variance of the stress tensor are expressed in 
terms of the coefficients p and q: 

s~ = - -  p = t /3  - -  II/I2; s~ = 3q = - -  2/9 + I I / I  2 - -  3I I I / I  s, ( 7 )  

while O<~s~<~l/3, s~<O.  The physical meaning of the second invariant s~ is the ratio of the 
mean tangential stress to the mean normal [4]. Along with s~ it is convenient to choose as 
third invariant the quantity ~, the shape angle, determined according to [4] by the relation 

sin 3~ = s~/~f(413) (s~)S; _ n/6 ~< ~ ~< ~/6. ( 8 )  

The shape angle ~ characterizes the ratio of the mean tangential stress at the point under 
consideration to the maximum tangential stress. 

Relations between Invariants. Thus, if pk, s~, ~ are selected as system invariants of 
the Reynolds stress tensor, the principal normal stresses o l, a 2, Oa (with oz~o2~os) can 
be written as [2] 

~, = - - p k  ( t /3  + 2 V - s t / 3  sin(~ + 2n/3))~ 

~ = - - p k ( l l 3 + 2 ~ r s ~ / 3 s i n ~ ) ,  " ( 9 )  

e, = - - p k  ( i /3  + 2 ]/-s2-~/3 sin (~ + 4~/3)). 
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To find relations between the invariants @k, s V 3, ~ it is useful to turn attention to the 
function Q, determined by expression (6). Taking into account (7), we have Q=- (sV/3)3q - (sv/ 
6) 2 For Q = 0 it follows from the last expression that the following relation holds between 
the invariants of the tensor R: 

' my=- ( i o )  

Substitution of (I0) into (8) gives sin3$ = -I, whence $ = --~/6. In this case, as is seen 

from (9), if 0 < s V < i/3, the principal stresses are o 2 = 03, and the ellipsoid tensor for R 

is an ellipsoid of revolution. The limiting cases sV= 0 and s V = i/3 deserve separate con- 

sideration. If s V O, all three roots of the characteristic equation are identical [01 
02 = 03 = -(i/3)pk], all fluctuations are identical, and turbulence is isotropic (the tensor 
ellipsoid transforms in this case to a sphere). For s V2 ---- i/3 o 3 ---- 03 ----0 we also have the 
situation in which the velocity fluctuations are lumped in a single direction, corresponding 
to o z (the ellipsoid tensor transforms into a straight line). This corresponds to maximum 
anisotropy of fluctuations. The problem provided above shows that the invariant s V can be 
assigned in one sense - in a turbulent flow it characterizes the anisotropy of fluctuations. 

The case Q = 0 corresponds to vanishing differences of normal stresses, i.e., vanishing 
tangential stresses for areas whose orientation is related to the flow direction. If c I 
o 2 ~ 03 , then Q ~ 0, and the relation between the invariants of the tensor R becomes mere 
complex according to Eq. (i0) and the subsequent $ = -~/6 following from it. Constructing 

the dependence of Q on s V and s V from experimental data for diverse flows [5-12], the experi- 
mental points are located on some surface (see Fig. i), while for Q = 0 they fall on a curve 
described by (i0). Imposing all these experimental points on a single curve [projecting the 

surface on a line in the coordinates (pk, s V, ~)] is possible only by including the deformation 
flow characteristics determined by the tensor of averaged deformation velocities. The situa- 
tion here is similar to mechanics of a deformed solid, where, as well known [15], the invari- 
ants of the stress tensor are related by means of the invariants of the deformation tensor. 

Analysis of the distribution of points on the surface shown in Fig. i leads to the 
empirical equation 

Q = - (1/3) ((4/3) ~/pk) 2 (sV) 2, ( 11 ) 

where ~ is an invariant scalar quantity, characterizing the ratio of the specific power of 
Reynolds stresses to the shear intensity: 

"~ = ]R : d l / V ~ 2 ~ :  dl  ( 1 2 )  

( ~ is the averaged tensor of deformation velocities, and the double point denotes the double 
scalar product of tensors). For a simple shear flow it follows from (12) that �9 is simply 
the modulus of the tangential stress, pu'v' - R12. 

Using relations (6) and (8), together with (ii) one can write [16] 

cos 3~ = 4~clpk. ( 13 ) 

In Fig. 2 (the notation is the same as in Fig. i) we provide the experimental curve in 
the coordinates ~/pk - cos 3~, whose approximation is also the empirical equation (13), show- 
ing that the ratio ~/pk varies from 0 to 0.25. It is interesting to note that the numerous 
experimental data (flows in boundary layers, jets, wakes) imply [17] constancy of ~/pk in a 
large portion of cross sections of these flows. This served as justification for using in the dif- 
ferential transport models of the kinetic energy [18] the relation r = count = el, called in 
the ~literature the Nevzglyadov - Dryden relation (while Bredshaw and Ferris use a I = 0~ 15). Ac- 
count Of the nonconstancy of the ratio ~/pk, according to Eq. (13), can substantialiy refine 
the calculation of fluctuations, particularly near the boundaries of turbulent flows. 

Also shown in Fig. 2 is the agreement with experiments of the first (second) empirical 
relation, relating the three invariants of the Reynolds stress tensor: 

20/(cos + 3vo/V- ) = 

where V 0 is determined by the expression 

Vo = [v'~l/2p IIIa  ]vz; 

(14) 

(15) 
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V is the gradient operator, and li d is the second invariant of the velocity deformation 
tensor d . For simplicity of shear flows V 0 is determined by derivatives with respect to 

t h e  t r a n s v e r s e  c o o r d i n a t e :  V0 = dr P E~-" The e m p i r i c a l  e q u a t i o n s  (13)  and (14) can be used  

to  c a l c u l a t e  t h e  e s t a b l i s h m e n t  of  t u r b u l e n t  f lows  of  an i n c o m p r e s s i b l e  f l u i d .  

Governing  Equa t ion  f o r  t h e  Reynolds  S t r e s s  Tenso r .  In  s o l v i n g  p rob lems  of  e s t a b l i s h i n g  
isothermal turbulent flows of an incompressible fluid, it is necessary to close the system 
of equations consisting of the equations of motion and continuity. For this it is necessary 
to write down the governing (rheological) relation for R, relating it to the average tensor 
of deformation velocities d, while the relation must account for nonlinearity, anisotropy at 
the off-axis level of R and d , and the memory of the turbulent flow. As implied by experi- 
ments of related branches in mechanics of continuous media (theory of plasticity with aniso- 
tropic hardening [3], encountering similar problems), the governing relation accounting for 
the complex effects enumerated above necessarily has a differential shape. At the same time 
one widely uses in turbulence theory differential transport models, constructed on the basis 
of the known transport equations of Reynolds stresses [19], written down by Reynolds himself. 
These equations contain a number of correlation terms, requiring some approximation. 

The presently available differential models for the transport tensor R are based on 
the isotropic approximation of theterms indicated above, each such term being approximated 
separately, independently of the others. In this case the purpose does not become an explicit 
correct description (according with experiment) of the simultaneous axes of the tensors R 
and d, as well as the necessity of transforming the model in the case of simple shear flows 
to the well-recommended Boussinesq equation ~12 = ~tdu/dy (~t is theturbulent viscosity).: 
As a result the suggested turbulence models cover only part of the class of problems, in- 
cluding those which are solved with sufficient accuracy by much simpler methods. In attempts 
of extending the possibilities of the transport equation, they contain a large number of 
auxiliary functions and empirical constants. In several variants of the theory the number 
of the latter reaches 20, and the theory acquires an explicitly interpolation character: the 
number of constants practically does not exceed the number of problems for which the theory 
gives'satisfactory results [19]. 

In constructing the differential governing relation at a phenomenological level it is 
natural to require an approximation not of the separate terms contained in the Reynolds trans- 
port equation for R, but of the whole effect of these terms in the complex, so as to describe 
correctly (according to experimental data) the anisotropy, the nonaxial feature of R and d. 
Besides, the rationally constructed differential transport model for R must lead inthe 
limiting case of simple shear flows to algebraic models of the Boussinesq type, while the 
flow curvature is accounted for in this case automatically, without introducing any correc- 
tions. In writing down the differential governing relation it is necessary to follow, based 
on experiments, the purpose of the simplest economical description (from the point of view 
of number of phenomenological constants, as well as the algorithm of flow calculations) of 
nonlinearity, anisotropy, and memory of turbulent flows. The simplicity of the governing 
relation is the foundation of its successful use in engineering applications. 

Starting fromthese considerations, to establish the flow of an incompressible fluid one 
can assume [16] a governing relation for R, written in componentless form: 
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(v.v)R = --Azd --  2~t(d.w + (d.w) T) + (R.w + (R.w)T)~ (16)  

where d and w are the tensors of deformation velocity and of the average rotation (d = (I12) • 
(V v + (VV)T), w = (I/2)(VV -- (VV)T)); V is the average velocity vector, �9 is defined by expression 
(12), the symbol T denotes transposition, and Vt is the turbulent viscosity which, as well 
as the other invariant scalar quantity A, having the meaning of dimensionless diffusion coef- 
ficient for R, is determined at a phenomenological level. 

In component form in a Cartesian rectangular basis Eq. (16) acquires the form 

aRij 
v k - ~ z k = - - A ~ d i j - - 2 ~ t ( d i h w h ~  + ~hwki) + (Ri~wk~ + B~w~), 

(16a) 

Based on the analysis of experimental data [5-12] 

A~ = -- 7T 
i 2 

V 1 + 2 ( ~ ) 1 5  + -T  pV0, (17) 

where T and V 0 are defined by expressions (12) and (15), and ~ = ~/~ (B is the dynamic 
viscosity). The scalar Ut in (16) and (17) must also be written down in invariant form. It 
is conveniently selected within the generalized Van Karman theory, simply and effectively 
describing a variety of turbulent flows with the use of only two phenomenological constants 
[20-22]: 

~t = P v •  ~- (18) 

Here v is the kinematic viscosity, n and x,~ are phenomenological constants, while for the 
"Blasius" [21] region of Reynolds numbers, most interesting for practical applications, n = 
3/4, ~n = 0.53 (this flow region in a tube occupies approximately two decades, Re = i0~-i06), 
and T is the local Reynolds number in the Karman form: 

T = I 21 2d: d 1 t/2 -- 12w: w 11/213 
~(2Vl~t)2 (19) 

[ ~ = (I/2)(V• is the rotor of the average velocity]. In particular, for flow in a planar 
channel, a circular tube, and for circular Couette flow (for which ~ = u/r) this generalized 
T leads, respectively, to the expressions 

r I 'l - T =  T =  IXlr~"l IXe+r~ (20) 
[ u" I z' dr I dr2 I ~ [.3o' + ro" ] 2 

(the primes denote derivatives with respect to the transverse coordinate). 

The model (16) is primarily the new governing relation for the Reynolds stress tensor 
in the form of a transport equation, simultaneously accounting for the nonlinearity, aniso- 
tropy, and memory of turbulent flows, which: 

i) approximates the terms of the Reynolds equation for turbulent stresses not isotropi- 
cally, as in the existing differential transport models, but anisotropically, by 
means of introducing into the treatment the averaged rotation tensor (by the anti- 
symmetric part of the gradient tensor of average velocities V v, guaranteeing repe- 
tition of the principal axes of the deformation velocity tensor to the axes of the 
stress tensor); 

2) leads for simple shear flows to algebraic governing relations, and includes the 
limiting special case of algebraic expressions for the turbulent tangential stress, 
while such expressions can also be the Prandtl model of mixing length, the turbulent 
viscosity model, and the V. V. Novozhilov equation according to the generalized Karman 
theory. It is noted that if for the expression for Pt one uses relations (18), (19), 
the model contains a minimal amount of phenomenological constants, being universal 
for the "Blasius" region of Reynolds numbers; 

3) automatically accounts for flow curvature, rendering unnecessary the introduction of 
empirical curvature corrections, characteristically the case for the currently avail- 
able turbulence theories. The latter is easily verified, for example, by solving 
the problem of turbulent Couette flow between two rotating cylinders and comparing 
the solution with the known experimental data of Taylor and Wendt [16]. 
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Calculation of Fluctuation Characteristics of Turbulent Flows. The calculation scheme 
of normal Reynolds stresses (and consequently, fluctuating flow characteristics) for estab- 
lishing simple shear flows and adjacent flows is most simply treated on the example of flow 
in a planar channel. Writing Eq. (16) in component form as applied to establishment of flow 
in a planar channel, where there exists only a longitudinal velocity component u(y), depend- 
ing on the transverse coordinate, we then obtain 

2 o o 
o = o + [,o - t ' AT d Y \ o  0 0 . 

where A, ~, and ~t are defined by relations (12), (17)-(19). As a result we have a system 
of two algebraic rheological relations (for tangential and normal stresses): 

du. 
B l ~ " ~  = P' d-7' Vt = P';• T3/4, ( 2 1 )  

7"c 1 9. 
R n - - T 1 2 2 - - - - - - a ;  a =  V t + 2 ( ~ v ) a / s  +"2-PV~ 

Similar relations can also be found for other simple shear turbulent flows and adjacent 
flows, admitting a simplification of boundary-layer type. 

System (21) shows that the tangential and normal stresses of this flow are distinct. 
And since the normal stresses are determined by the tangential ones and their gradients, it 
is first necessary to perform a calculation of the tangential stress and the averaged veloc- 
ity field on the basis of the first equation of system (21), and then calculate ~, ~t, IId, 
and V 0. In the present study this and all subsequent calculations were carried out by the 
generalized Karman theory [21]. Calculations can also be performed by any other semiempirical 
theory; they all give closely related results, at least for a simple flow such as a channel. 
Also, the final results of the following calculations of fluctuations are practically identi- 
cal, independently of the scheme of calculating �9 and the velocity profiles. 

Before turning to the treatment of the second equation of system (21) it is useful to 
rewrite the equations known from elasticity theory [23] for a planar stress state (when os3 = 
03 ) as applied to the Reynolds stress tensor: 

H n  = - -  ( 1 / 3 - -  V s ~ / 3  sin~ + V ~ 2  v cos~ cos 2a) pk, 

= - ( , / 3 -  oos 

Raa = - -  ( i /3  + 2 V s ~ / 3  sin ~) pk,, 

where ~ is the inclination angle of the principal axis of the stress tensor with respect to 
the flow, determined by the relation 

---= R12 = V~ V cos ~ sin 2apk. (23) 

Equations (22) and (23) are valid for any simple shear flow. The second equation of system 
(21) with account of (22) is reduced to the form 

2pk [/-s~ cos ~ cos 2a = a. ( 2 4 )  
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Equations (13), (14), and (24) form a system of three algebraic equations in the three un- 
v 

known invariants pk, s2, $. Following its solution, one can calculate the normal stresses 

Rn=_pe.2 R~ 2 = _pu,~ Rs3=--pm '~ by Eqs. (22). 

Figure 3 shows a comparison of calculations of the fluctuating characteristics of tur- 
bulent flows with experiment [5-10] for various flows: a) in a planar channel, Re = l0 s , b) 
planar nonpressurized Couette flow, Re = 105 , c) in the boundary layer of a planar film, 
Re x = 106 , d) in a planar jet, Re b = 105; the line is the calculation (I is the longitudinal 
fluctuation component, 2 is the transverse, and 3 is the component across), and the points 
are experiment. 

Figure 4 shows the behavior of the invariant of the Reynolds stress tensor across the 
flow for flow in a planar channel as a function of transverse coordinate measured from the 
wall: the solid lines are the calculation with Re = 105 , the points are experiment [5], and 
the dashed lines i and 2 show the effect of the Reynolds number on the fluctuation kinetic 
energy for Re = 104 and 108 

For more complicated stationary turbulent flows of an incompressible fluid (spatially) 
it is necessary to solve a system of differential equations in partial derivatives, which 
is possible only by numerical methods. This system consists of the equations of motion of 
a continuous medium in the stresses (the momentum balance equations), continuity, and the 
governing equation (16). Following the statement of the corresponding boundary conditions, 
the problems of calculating the turbulent flow become boundary-value problems of mathematical 
physics. It is interesting to note that even in these complicated problems the structure 
of Eqs. (16) allows the system of equations, written in scalar form, to be partitioned into 
two groups, the first of which is independent of the second and provides the possibility of 
carrying out the calculation of tangential stresses and average velocities, while the second, 
following calculations on its basis, allows one to calculate the fluctuating flow char- 
acteristics, 
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TWO-PHASE FILTRATION IN MIXED-WETTABLE POROUS MEDIA 

A. V. Domanskii and V. I. Pen'kovskii UDC 532.546 

The pressure difference 

p-p1=~, (0.i) 

called the "capillary pressure at the phase boundary," is the governingrelation which closes 
the standard [i] system of filtration equations for immiscible incompressible fluids. This 
system is composed of the equations of motion (generalized Darcy's law) 

v = -~(~@mx, vl = -kd1~)@dax (0.2) 

and the mass conservation law 

mOgat + a~ax = O, --madat + av/ax = O. ( 0 . 3 )  

Here, p is the pressure in the fluid (oil, for example), which occupies the fraction s of 
the pore space; s I = 1 - s is the saturation of the second fluid (water), with a pressure Pl; 
k and k I are the total permeabilities of the medium, referred to the viscosities, at s = 1 
and s = 0, respectively; f and fl are the relative ("phase") permeabilities; v and v I are 
the rates of filtration of the fluids; m is porosity; x is a coordinate; t is time. 

The capillary pressure Pc = Pc(s) is determined experimentally under static conditions 
and is assigned in the form of a fixed function of saturation s. In particular, the medium 
is assumed to be hydrophilic at Pc ~ 0 and hydrophobic at Pc ~ 0. However, the assumption 
that the sign of Pc in (0.i) is fixed is not always valid in problems of oil-field mechanics, 
since the problem of the wettability of the rocks which make up the oil-bearing strata cannot 
always be solved unambiguously [2, 3]. 

It was suggested in [4] that there are three main classes of porous media with regard to 
the case of two immiscible fluids saturating these media: i) wettable (Pc ~ 0); 2) unwettable 
(Pc & 0); 3) intermediate-wettable or "mixed-wettable" [5]. A fluid-fluid-porous-medium 
system of the third type is characterized by a change in the sign of the function Pc. 

As is known [6], the wettability of a system under static conditions is determined by 
the contact angle 8 from the Young equilibrium equation 

c o s O =  (71 - -  ~)/?1.2, (0.4) 

where Yi (i = i, 2) are the specific free energies of the interfaces between the skeleton 
and each of the fluids; Yi,2 is the specific free energy of the interface between the fluids 
(surface tension). If 71 > Y2, then the angle 8 is acute, and fluid 2 wets the solid more 
readily than fluid I. When Xl = ~2, cos8 z 0, the fluids wet the solid equally well. The 
relationship between the values of 7i may change over time even under static conditions 
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